C++ Mathematical Expression Toolkit (ExprTk) release
Loading...
Searching...
No Matches
exprtk_vectorized_binomial_model.cpp
Go to the documentation of this file.
1/*
2 **************************************************************
3 * C++ Mathematical Expression Toolkit Library *
4 * *
5 * Vectorized Binomial Option Pricing Model *
6 * Author: Arash Partow (1999-2024) *
7 * URL: https://www.partow.net/programming/exprtk/index.html *
8 * *
9 * Copyright notice: *
10 * Free use of the Mathematical Expression Toolkit Library is *
11 * permitted under the guidelines and in accordance with the *
12 * most current version of the MIT License. *
13 * https://www.opensource.org/licenses/MIT *
14 * SPDX-License-Identifier: MIT *
15 * *
16 **************************************************************
17*/
18
19
20#include <cstdio>
21#include <string>
22
23#include "exprtk.hpp"
24
25
26template <typename T>
28{
29 typedef exprtk::symbol_table<T> symbol_table_t;
30 typedef exprtk::expression<T> expression_t;
31 typedef exprtk::parser<T> parser_t;
32
33 const std::string european_option_binomial_model_program =
34 " var dt := t / n; "
35 " var z := exp(r * dt); "
36 " var z_inv := 1 / z; "
37 " var u := exp(v * sqrt(dt)); "
38 " var u_inv := 1 / u; "
39 " var p_up := (z - u_inv) / (u - u_inv); "
40 " var p_down := 1 - p_up; "
41 " "
42 " var option_price[n + 1] := [0]; "
43 " "
44 " for (var i := 0; i <= n; i += 1) "
45 " { "
46 " var base_price := s * u^(n - 2i); "
47 " option_price[i] := "
48 " switch "
49 " { "
50 " case callput_flag == 'call' : max(base_price - k, 0); "
51 " case callput_flag == 'put' : max(k - base_price, 0); "
52 " }; "
53 " }; "
54 " "
55 " var p_u_zinv := z_inv * p_up; "
56 " var p_d_zinv := z_inv * p_down; "
57 " "
58 " for (var j := n - 1; j >= 0; j -= 1) "
59 " { "
60 " /* y_i <- a * x_i + b * y_(i+1) i:[0,j] */ "
61 " axpbsy(p_u_zinv, option_price, "
62 " p_d_zinv, 1, option_price, "
63 " 0, j); "
64 " }; "
65 " "
66 " option_price[0]; ";
67
68
69 T s = T( 100.00); // Spot / Stock / Underlying / Base price
70 T k = T( 110.00); // Strike price
71 T v = T( 0.30); // Volatility
72 T t = T( 2.22); // Years to maturity
73 T r = T( 0.05); // Risk free rate
74 T n = T(2000.00); // Number of time steps
75
76 std::string callput_flag;
77
79
80 symbol_table_t symbol_table;
81 symbol_table.add_variable("s",s);
82 symbol_table.add_variable("k",k);
83 symbol_table.add_variable("t",t);
84 symbol_table.add_variable("r",r);
85 symbol_table.add_variable("v",v);
86 symbol_table.add_constant("n",n);
87 symbol_table.add_stringvar("callput_flag",callput_flag);
88 symbol_table.add_package(vecops_package);
89
90 expression_t expression;
91 expression.register_symbol_table(symbol_table);
92
93 parser_t parser;
94 parser.compile(european_option_binomial_model_program,expression);
95
96 const std::size_t rounds = 2000;
97
98 T binomial_call_option_price = T(0);
99 T binomial_put_option_price = T(0);
100
101 {
102 callput_flag = "call";
103
104 exprtk::timer timer;
105 timer.start();
106
107 for (std::size_t r = 0; r < rounds; ++r)
108 {
109 binomial_call_option_price = expression.value();
110 }
111
112 timer.stop();
113
114 printf("BinomialOptionPrice(Type: %4s, BasePx: %5.3f, Strike: %5.3f, Time: %5.3f, RFR: %5.3f, Vol: %5.3f, Steps: %4.1f) = %10.6f "
115 "total time: %6.3fsec rate: %6.3fcalc/sec\n",
116 callput_flag.c_str(),
117 s, k, t, r, v, n,
118 binomial_call_option_price,
119 timer.time(),
120 rounds / timer.time());
121 }
122
123 {
124 callput_flag = "put";
125
126 exprtk::timer timer;
127 timer.start();
128
129 for (std::size_t r = 0; r < rounds; ++r)
130 {
131 binomial_put_option_price = expression.value();
132 }
133
134 timer.stop();
135
136 printf("BinomialOptionPrice(Type: %4s, BasePx: %5.3f, Strike: %5.3f, Time: %5.3f, RFR: %5.3f, Vol: %5.3f, Steps: %4.1f) = %10.6f "
137 "total time: %6.3fsec rate: %6.3fcalc/sec\n",
138 callput_flag.c_str(),
139 s, k, t, r, v, n,
140 binomial_put_option_price,
141 timer.time(),
142 rounds / timer.time());
143 }
144
145 const T put_call_parity_diff =
146 (binomial_call_option_price - binomial_put_option_price) -
147 (s - k * std::exp(-r * t));
148
149 printf("Put-Call parity difference: %20.17f\n", put_call_parity_diff);
150}
151
152int main()
153{
154 vectorized_binomial_option_pricing_model<double>();
155 return 0;
156}
double time() const
Definition exprtk.hpp:43502
static const std::size_t rounds
void vectorized_binomial_option_pricing_model()