C++ Mathematical Expression Toolkit (ExprTk) release
Loading...
Searching...
No Matches
Functions
exprtk_jump_diffusion_process.cpp File Reference
#include <cstdio>
#include <string>
#include "exprtk.hpp"
Include dependency graph for exprtk_jump_diffusion_process.cpp:

Go to the source code of this file.

Functions

template<typename T >
void european_option_merton_jump_diffusion_process ()
 
int main ()
 

Function Documentation

◆ european_option_merton_jump_diffusion_process()

template<typename T >
void european_option_merton_jump_diffusion_process ( )

Definition at line 27 of file exprtk_jump_diffusion_process.cpp.

28{
29 typedef exprtk::symbol_table<T> symbol_table_t;
30 typedef exprtk::expression<T> expression_t;
31 typedef exprtk::parser<T> parser_t;
32 typedef exprtk::function_compositor<T> compositor_t;
33 typedef typename compositor_t::function function_t;
34
35 const std::string european_option_merton_jump_diffusion_process_program =
36 " var lambda_t := lambda * t; "
37 " var v_sqr := v^2; "
38 " var sigmaJ_sqr := sigmaJ^2; "
39 " "
40 " var option_price := 0; "
41 " var factorial := 1; "
42 " "
43 " for (var i := 0; i < n; i += 1) "
44 " { "
45 " var prob := exp(-lambda_t) * lambda_t^i / factorial; "
46 " var r_i := r - lambda * muJ + (i / t) * log(1 + muJ); "
47 " var sigma_i := sqrt(v_sqr + (i * sigmaJ_sqr) / t); "
48 " "
49 " option_price += "
50 " switch "
51 " { "
52 " case callput_flag == 'call' : prob * bsm_call(s, k, r_i, t, sigma_i); "
53 " case callput_flag == 'put' : prob * bsm_put (s, k, r_i, t, sigma_i); "
54 " }; "
55 " "
56 " factorial *= (i > 1) ? i : 1; "
57 " }; "
58 " "
59 " option_price; ";
60
61 T s = T(100.00); // Spot / Stock / Underlying / Base price
62 T k = T(110.00); // Strike price
63 T v = T( 0.30); // Volatility
64 T t = T( 2.22); // Years to maturity
65 T r = T( 0.05); // Risk free rate
66 T lambda = T(0.0001); // Jump intensity (average jumps per year)
67 T muJ = T( -0.05); // Mean jump size (negative for downward jumps)
68 T sigmaJ = T( 0.30); // Standard deviation of the jump size
69 T n = T( 50.00); // Number of terms in the Poisson sum
70
71 std::string callput_flag;
72
73 symbol_table_t symbol_table(symbol_table_t::e_immutable);
74 symbol_table.add_variable ("s" , s );
75 symbol_table.add_variable ("k" , k );
76 symbol_table.add_variable ("v" , v );
77 symbol_table.add_variable ("t" , t );
78 symbol_table.add_variable ("r" , r );
79 symbol_table.add_variable ("lambda", lambda);
80 symbol_table.add_variable ("muJ" , muJ );
81 symbol_table.add_variable ("sigmaJ", sigmaJ);
82 symbol_table.add_variable ("n" , n );
83 symbol_table.add_stringvar("callput_flag",callput_flag);
84 symbol_table.add_pi();
85
86 compositor_t compositor(symbol_table);
87
88 compositor.add(
89 function_t("bsm_call")
90 .vars("s", "k", "r", "t", "v")
91 .expression
92 (
93 " var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); "
94 " var d2 := d1 - v * sqrt(t); "
95 " s * ncdf(d1) - k * exp(-r * t) * ncdf(d2); "
96 ));
97
98 compositor.add(
99 function_t("bsm_put")
100 .vars("s", "k", "r", "t", "v")
101 .expression
102 (
103 " var d1 := (log(s / k) + (r + v^2 / 2) * t) / (v * sqrt(t)); "
104 " var d2 := d1 - v * sqrt(t); "
105 " k * exp(-r * t) * ncdf(-d2) - s * ncdf(-d1); "
106 ));
107
108 expression_t expression;
109 expression.register_symbol_table(symbol_table);
110
111 parser_t parser;
112 parser.compile(european_option_merton_jump_diffusion_process_program, expression);
113
114 callput_flag = "call";
115
116 const T jdp_call_option_price = expression.value();
117
118 callput_flag = "put";
119
120 const T jdp_put_option_price = expression.value();
121
122 printf("JDPPrice(%4s, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n",
123 callput_flag.c_str(),
124 s, k, t, r, v,
125 jdp_call_option_price);
126
127 printf("JDPPrice(%4s, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n",
128 callput_flag.c_str(),
129 s, k, t, r, v,
130 jdp_put_option_price);
131
132 const T put_call_parity_diff =
133 (jdp_call_option_price - jdp_put_option_price) -
134 (s - k * std::exp(-r * t));
135
136 printf("Put-Call parity difference: %20.17f\n", put_call_parity_diff);
137}

◆ main()

int main ( )

Definition at line 139 of file exprtk_jump_diffusion_process.cpp.

140{
141 european_option_merton_jump_diffusion_process<double>();
142 return 0;
143}